Midterm Exam, Quantum Mechanics 501, Rutgers

October 30, 2014

1) An electron $\left(m=0.511 \times 10^{6} \mathrm{eV} / \mathrm{c}^{2}\right)$ is bound in a parabolically shaped one-dimensional potential. The parameters of the potential can be found from the fact that the electron feels potential of 1 eV when it is $5 \AA$ away from the center.

- What minimum total energy (in eV) can it have?
- What wavelength of light (in nm) will be strongly absorbed by this electron?

Useful constants: $\hbar c \approx 197 \mathrm{eV} \mathrm{nm}$ and mass of the electron $m=0.511 \times 10^{6} \mathrm{eV} / \mathrm{c}^{2}$
Ans.: The frequency can be determined by $\frac{1}{2} m \omega^{2} x_{0}^{2}=V_{0}$, where $x_{0}=5 \AA$ and $V_{0}=$ 1 eV . We get

$$
\begin{equation*}
\hbar \omega=\sqrt{\frac{2 V_{0}}{m c^{2}}} \frac{\hbar c}{x_{0}} \approx 0.78 \mathrm{eV} \tag{1}
\end{equation*}
$$

The minimum of energy is

$$
\hbar \omega / 2 \approx 0.39 \mathrm{eV} .
$$

For the photon to be absorbed, it must have energy of the elementary excitations, $\hbar \omega$. The wavelength that corresponds to this excitaton is

$$
\lambda=\frac{h c}{E}=\frac{2 \pi \hbar c}{\hbar \omega} \approx 6274 \mathrm{~nm} .
$$

2) Now suppose the electron is in superposition of the first two excited states $|\psi(t=0)\rangle=$ $\frac{1}{\sqrt{2}}(|1\rangle+|2\rangle)$ of the Harmonic oscilator.

- What is expectation value of the energy?
- Find $\left\langle x^{2}\right\rangle-\langle x\rangle^{2}$ at $t=0$ in units of $\frac{\hbar}{m \omega}$.
- Find $\langle x\rangle(t)$ (expectation at time $t>0$) in units of $\sqrt{\frac{\hbar}{m \omega}}$.

Ans.:

- The expectation value of the energy is

$$
\langle E\rangle=\langle\psi| H|\psi\rangle=2 \hbar \omega .
$$

which is of course the geometric average of the two eigenenergies.

- The position operator is $\hat{X}=\sqrt{\frac{\hbar}{2 m \omega}}\left(a^{\dagger}+a\right)$. The expectation values are

$$
\begin{align*}
& \langle X\rangle=\sqrt{\frac{\hbar}{2 m \omega}} \frac{1}{2}(\langle 1|+\langle 2|)\left(a^{\dagger}+a\right)(|1\rangle+|2\rangle)=\sqrt{\frac{\hbar}{m \omega}} \tag{2}\\
& \left\langle X^{2}\right\rangle=\frac{\hbar}{2 m \omega} \frac{1}{2}(\langle 1|+\langle 2|)\left(a^{\dagger}+a\right)^{2}(|1\rangle+|2\rangle)=\frac{2 \hbar}{m \omega} \tag{3}\\
& \left\langle X^{2}\right\rangle-\langle X\rangle^{2}=\frac{\hbar}{m \omega} \tag{4}
\end{align*}
$$

The time dependent wave function is

$$
\begin{equation*}
|\psi(t)\rangle=\frac{1}{\sqrt{2}}\left(e^{-i E_{1} t / \hbar}|1\rangle+e^{-i E_{2} t / \hbar}|2\rangle\right)=\frac{e^{-i E_{1} t / \hbar}}{\sqrt{2}}\left(|1\rangle+e^{-i \omega t}|2\rangle\right) \tag{5}
\end{equation*}
$$

hence expectation value of position is

$$
\begin{equation*}
\langle X\rangle(t)=\sqrt{\frac{\hbar}{2 m \omega}} \frac{1}{2}\left(\langle 1|+e^{i \omega t}\langle 2|\right)\left(a^{\dagger}+a\right)\left(|1\rangle+e^{-i \omega t}|2\rangle\right)=\sqrt{\frac{\hbar}{m \omega}} \cos (\omega t) \tag{6}
\end{equation*}
$$

3) Two quantum operators have the matrix representation

$$
A=\left(\begin{array}{ccc}
0 & 1 & 0 \tag{7}\\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right) \quad B=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right)
$$

a) A system is in quantum state $|\psi\rangle$ that is in an eigenfunction of operator A, corresponding to eigenvalue -1 . Then for this state, what are $\langle A\rangle$ and ΔA ?
b) First A is measured and the result is $a=-1$. What is the state of the system after the measurement?
c) Immediately afterwards, B is measured. What is the probability to find $b=1$?
d) Assuming that $b=1$ was indeed found in (c), what is the state of the system after the measurement of B ?

Ans.:

a) The eigenstate has no uncertainty $\Delta A=0$ and its average is eigenvalue $\langle A\rangle=-1$.
b) To answer the next few questions, we need to diagonalize A and B. First, notice the block-form of the matrices, hence only 2×2 diagonalization is needed. These are the eigenvalues and eigenvectors of operator A

$$
\begin{array}{ll}
a_{0}=1 & \left|a_{0}\right\rangle=\frac{1}{\sqrt{2}}(1,1,0) \\
a_{1}=1 & \left|a_{1}\right\rangle=(0,0,1) \tag{8}\\
a_{2}=-1 & \left|a_{2}\right\rangle=\frac{1}{\sqrt{2}}(1,-1,0)
\end{array}
$$

Similarly for operator B

$$
\begin{array}{ll}
b_{0}=1 & \left|a_{0}\right\rangle=(1,0,0) \\
b_{1}=1 & \left|a_{1}\right\rangle=\frac{1}{\sqrt{2}}(0,1,1) \tag{9}\\
b_{2}=-1 & \left|a_{2}\right\rangle=\frac{1}{\sqrt{2}}(0,1,-1)
\end{array}
$$

After the measurement of $a=-1$ the wave function is equal to $\left|a_{2}\right\rangle=\frac{1}{\sqrt{2}}(1,-1,0)$.

- We start here with $\left|a_{2}\right\rangle$ and after measurement find either $\left|b_{0}\right\rangle$ or $\left|b_{1}\right\rangle$. The combined probability is

$$
\begin{equation*}
P(b=1)=\left|\left\langle b_{0} \mid a_{2}\right\rangle\right|^{2}+\left|\left\langle b_{1} \mid a_{2}\right\rangle\right|^{2}=\frac{3}{4} \tag{10}
\end{equation*}
$$

- The system is left in the projected state, i.e.,

$$
\left|\psi_{\text {final }}\right\rangle=\mathcal{P}\left|a_{2}\right\rangle=\left|b_{0}\right\rangle\left\langle b_{0} \mid a_{2}\right\rangle+\left|b_{1}\right\rangle\left\langle b_{1} \mid a_{2}\right\rangle=\frac{1}{2 \sqrt{2}}(2,-1,-1)
$$

If normalized, the state becomes

$$
\left|\psi_{\text {final }}\right\rangle=\frac{1}{\sqrt{6}}(2,-1,-1)
$$

4) A particle in 1 D is described by the usual Schroedinger equation with potential $V(x)$, which is a hybrid of the infinite well and the attractive Dirac-delta function, $V(x)=$ $-\lambda \delta(x)$ for $|x|<L / 2$ and $V(x)=+\infty$ for $|x|>L / 2$. Usually we specify the parameters in H and ask for the ground state energy E_{0}, but this problem is backward: Assuming that the ground state energy E_{0} is exactly zero, find the value of λ that makes that possible:
a) Consider the form of the Schrodeinger equation in the region $0<x<L / 2$ and find the general form of the solution. (Don't worry if the form looks slightly surprising.)
b) Of course, a similar form, with different coefficients, applies in $-L / 2<x<0$. Use this knowledge to sketch the form of the wave function (which must be consistent with the boundary conditions).
c) Find the value of λ that solves the problem.

Ans.:

a) Since there is no potential in the box (except at $x=0$) and energy vanishes, we have

$$
\begin{array}{ll}
-\frac{\hbar^{2}}{2 m} \psi^{\prime \prime}=0 & x<0 \tag{11}\\
-\frac{\hbar^{2}}{2 m} \psi^{\prime \prime}=0 & x>0
\end{array}
$$

The solution is thus $\psi(x)=k x+A$
b) To satisfy the boundary condition at $x=-L / 2$ and $x=L / 2$ we must have

$$
\psi(x)= \begin{cases}k(x+L / 2) & x<0 \tag{12}\\ k(L / 2-x) & x>0\end{cases}
$$

c) To determine λ, we need to integrate the Schroedinger equation around the point $x=0$, and we find

$$
\begin{equation*}
-\frac{\hbar^{2}}{2 m} \int_{-\delta}^{\delta} \psi^{\prime \prime} d x+\int_{-\delta}^{\delta} V(x) \psi(x) d x=0 \tag{13}
\end{equation*}
$$

which gives

$$
\lambda=\frac{2 \hbar^{2}}{m L}
$$

Normalization will also give the coefficient $k=\sqrt{\frac{12}{L^{3}}}$.

